Möbius
A Möbius transformation (also called bilinear or fractional-linear transformation) is the ratio of two linear polynomials:
\[f(z)=\frac{az+b}{cz+d}.\]
Among other notable properties, they map circles and lines to other circles and lines.
For convenience of typing on some keyboards, Mobius
is an alias for Möbius
in the package.
The package defines a Möbius
type that can be constructed in a variety of ways:
Möbius(a, b, c, d)
Specify the coefficients as in the formula above.
Möbius(A)
Specify the coefficients as the matrix $A=[a\;b;\;\,c\;d]$.
Möbius(z, w)
Construct the unique transformation that maps the three points z[1], z[2], z[3]
to w[1], w[2], w[3]
, respectively. Either vector of points may include Inf
.
Möbius(C1, C2)
Construct a transformation that maps the Line or Circle C1
to the Line or Circle C2
.
Methods
Suppose f
is a value of type Möbius
. Then f(z)
evaluates the transformation at the number z
. In addition, f(C)
, where C
is a Circle or Line, returns the Circle or Line that is the image of C
under f
. Similarly, f(R)
, where R
is an AbstractDisk
or AbstractHalfplane
, returns the appropriate type of image region. For example,
julia> f = Möbius(Line(-1, 1), Circle(0, 1))
Möbius transformation: (1.0 + 1.0im) z + (3.6666666666666665 - 1.6666666666666665im) –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– (1.0 + 1.0im) z + (-1.6666666666666665 + 3.6666666666666665im)
julia> f(upperhalfplane)
Disk interior to: Circle(0.0+0.0im,1.0,ccw)
julia> isapprox(ans, unitdisk)
true
Two other methods are defined:
inv(f)
Construct the inverse transformation.
f∘g
(type "\circ" followed by tab key)
Construct the composed map, $z \mapsto f(g(z))$.