Usage from Python
You can call the functions in this package from Python using the PythonCall
/JuliaCall
package.
Installation
It's recommended to create a new virtual environment to try this out. In Python, you need to install juliacall
via
pip install juliacall
Then, start Python and run:
from juliacall import Main as jl
This will download and initialize a copy of Julia. Finally, you need to install this package in that Julia environment:
jl.seval('using Pkg; Pkg.add("RationalFunctionApproximation")')
That should be all you need to set up in the Python environment, although you may want to install ComplexRegions
as well, depending on your use case.
Usage
In each new Python session, you need to load the packages as follows:
from juliacall import Main as jl
jl.seval('using RationalFunctionApproximation, PythonCall')
All the functions and constants exposed to Julia by this package are available using the jl
object. For example, to use the discrete AAA algorithm:
import numpy as np # if installed in Python
x = np.linspace(-1, 1, 1000)
y = np.tanh(5 * (x - 0.2))
r = jl.aaa(x, y)
print(r)
Barycentric rational function of type (11,11)
This will return a wrapped Julia object that you can use in Python as if it were a Python object. For example, you can evaluate the approximation at a point:
r(0.5)
0.9051482536448658
If you want to apply the function at multiple points, you can use comprehensions, or you can vectorize the call in numpy:
rv = np.vectorize(r)
rv(np.array([0.5, 0.6, 0.7]))
array([0.90514825, 0.96402758, 0.9866143 ])
You can get information about the approximation using any documented function in the package, e.g.:
print(jl.poles(r)) # returns wrapped Julia type
ComplexF64[0.20000000000544785 - 0.31415926535542893im, 0.20000000000544788 + 0.31415926535542893im, 0.20000207991810143 - 0.942477292594254im, 0.20000207991810143 + 0.9424772925942541im, 0.20308324780986833 - 1.5724812056318853im, 0.20308324780986833 + 1.5724812056318853im, 0.29268586746842673 - 2.3408220889660796im, 0.29268586746842673 + 2.34082208896608im, 0.9695028397625358 + 4.390786420000105im, 0.969502839762536 - 4.390786420000105im, 21.59156666159181 + 0.0im]
print(np.array(jl.poles(r))) # converts to numpy array
[ 0.2 -0.31415927j 0.2 +0.31415927j 0.20000208-0.94247729j
0.20000208+0.94247729j 0.20308325-1.57248121j 0.20308325+1.57248121j
0.29268587-2.34082209j 0.29268587+2.34082209j 0.96950284+4.39078642j
0.96950284-4.39078642j 21.59156666+0.j ]
Passing Python functions
For function approximation, you can pass a Python function to the approximate
package function.
def f(x):
return np.tanh(5 * (x - 0.2))
r = jl.approximate(f, jl.unit_interval)
r(.5)
0.9051482536448647